
FEATURES

- · Glass passivated
- Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- Available in ammo-pack
- Also available with preformed leads for easy insertion.

DESCRIPTION

Rugged glass SOD64 package, using a high temperature alloyed construction.

This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

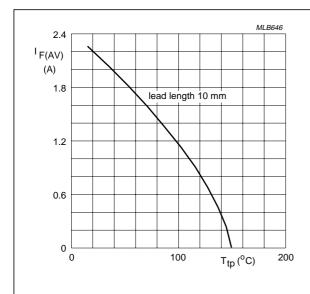
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage		_	600	V
V_R	continuous reverse voltage		_	600	V
I _{F(AV)}	average forward current	T _{tp} = 50 °C; lead length = 10 mm see Fig. 2; averaged over any 20 ms period; see also Fig 6	_	1.8	A
		T _{amb} = 60 °C; PCB mounting (see Fig.10); see Fig. 3; averaged over any 20 ms period; see also Fig. 6	_	0.8	A
I _{FRM}	repetitive peak forward current	T _{tp} = 50 °C; see Fig. 4	_	15	А
		T _{amb} = 60 °C; see Fig. 5	_	7	А
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j \text{ max}}$ prior to surge; $V_R = V_{RRMmax}$	_	40	А
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j \text{ max}}$ prior to surge; inductive load switched off	_	10	mJ
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature		-65	+150	°C

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

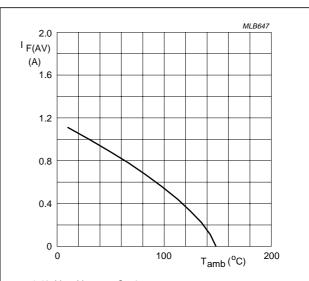
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 3 \text{ A}$; $T_j = T_{j \text{ max}}$; see Fig. 7	_	_	1.95	V
		I _F = 3 A; see Fig. 7	_	_	3.60	V
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA	700	_	_	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig. 8	_	_	5	μΑ
		$V_R = V_{RRMmax}$; $T_j = 150$ °C; see Fig. 8	_	_	75	μΑ
t _{rr}	reverse recovery time	when switched from $I_F = 0.5 \text{ A}$ to $I_R = 1 \text{ A}$; measured at $I_R = 0.25 \text{ A}$; see Fig. 12	-	_	15	ns
C _d	diode capacitance	$f = 1 \text{ MHz}$; $V_R = 0 \text{ V}$; see Fig. 9	_	135	_	pF
$\left \frac{dI_R}{dt} \right $	maximum slope of reverse recovery current	when switched from I_F = 1 A to $V_R \ge 30$ V and dI_F/dt = -1 A/ μ s; see Fig.11	_	_	3	A/μs

THERMAL CHARACTERISTICS


SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	25	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	75	K/W

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.10. For more information please refer to the "General Part of associated Handbook".



GRAPHICAL DATA

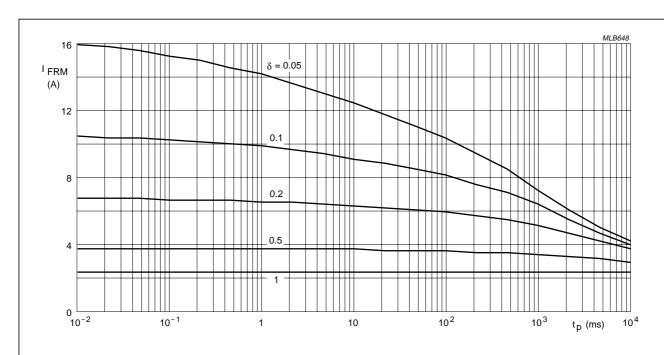
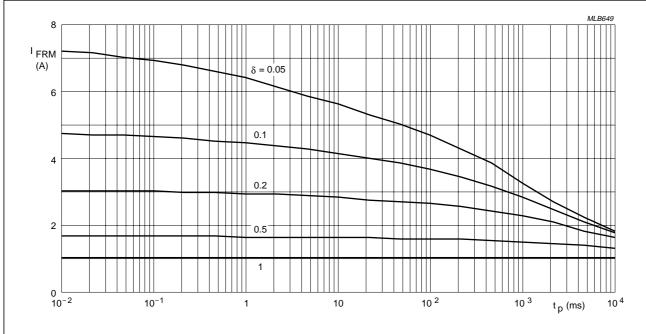

a = 1.42; $V_R = V_{RRMmax}$; $\delta = 0.5$. Switched mode application.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

 $\begin{aligned} &a=1.42;\ V_R=V_{RRMmax};\ \delta=0.5.\\ &\text{Device mounted as shown in Fig.10}.\\ &\text{Switched mode application}. \end{aligned}$

Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).



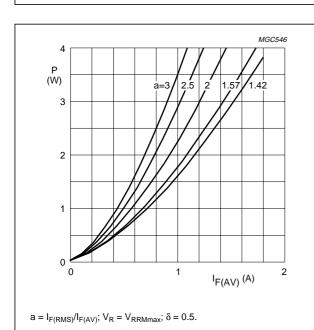
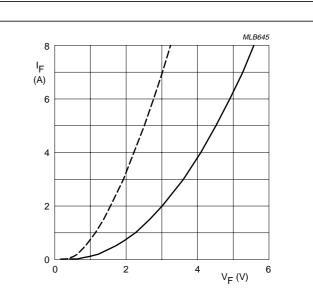
 T_{tp} = 50°C; $R_{th\ j-tp}$ = 25 K/W.

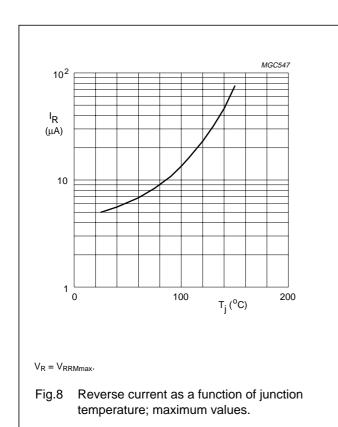
 V_{RRMmax} during 1 – $\delta;$ curves include derating for $T_{j\,max}$ at V_{RRM} = 600 V.

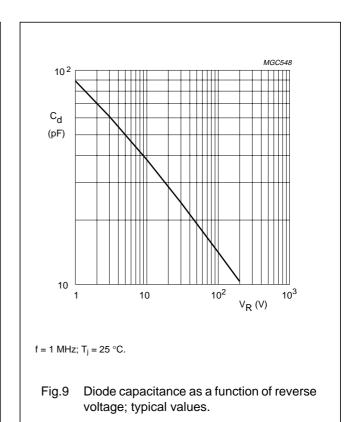
Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

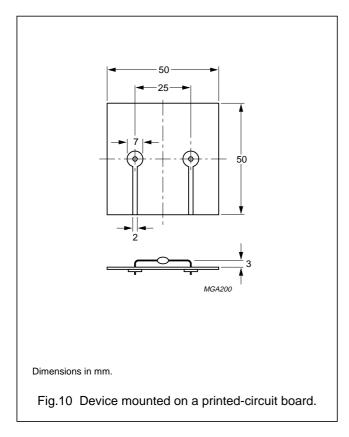
$$\begin{split} &T_{amb} = 60~^{\circ}C;~R_{th~j-a} = 75~\text{K/W}.\\ &V_{RRMmax}~\text{during}~1 - \delta;~\text{curves include derating for}~T_{j~max}~\text{at}~V_{RRM} = 600~\text{V}. \end{split}$$

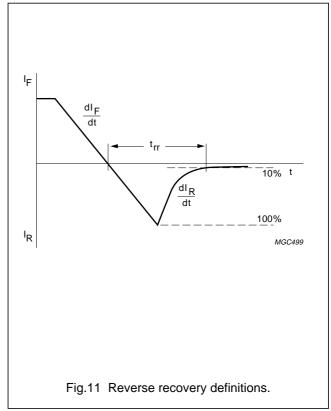
Fig.5 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

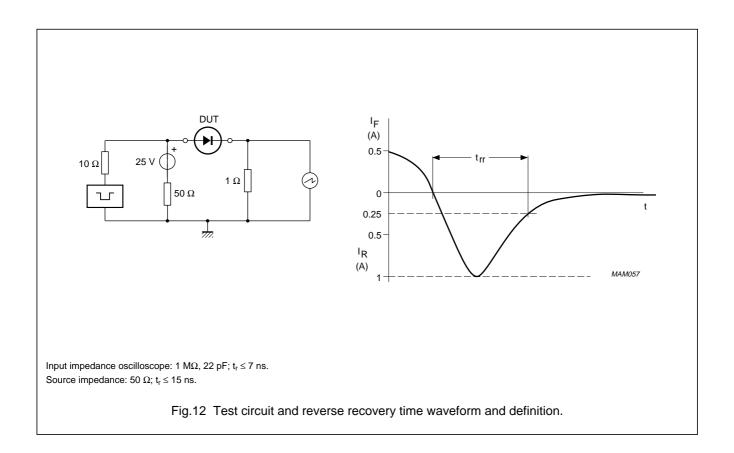



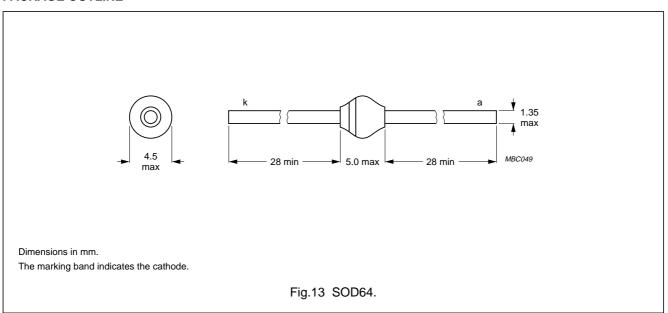

Fig.6 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.




Dotted line: $T_j = 150 \,^{\circ}\text{C}$. Solid line: $T_j = 25 \,^{\circ}\text{C}$.


Fig.7 Forward current as a function of forward voltage; maximum values.





PACKAGE OUTLINE

